翻訳と辞書
Words near each other
・ "O" Is for Outlaw
・ "O"-Jung.Ban.Hap.
・ "Ode-to-Napoleon" hexachord
・ "Oh Yeah!" Live
・ "Our Contemporary" regional art exhibition (Leningrad, 1975)
・ "P" Is for Peril
・ "Pimpernel" Smith
・ "Polish death camp" controversy
・ "Pro knigi" ("About books")
・ "Prosopa" Greek Television Awards
・ "Pussy Cats" Starring the Walkmen
・ "Q" Is for Quarry
・ "R" Is for Ricochet
・ "R" The King (2016 film)
・ "Rags" Ragland
・ ! (album)
・ ! (disambiguation)
・ !!
・ !!!
・ !!! (album)
・ !!Destroy-Oh-Boy!!
・ !Action Pact!
・ !Arriba! La Pachanga
・ !Hero
・ !Hero (album)
・ !Kung language
・ !Oka Tokat
・ !PAUS3
・ !T.O.O.H.!
・ !Women Art Revolution


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

Icositetrachoric symmetry : ウィキペディア英語版
Point groups in four dimensions

In geometry, a point group in four dimensions is an isometry group in four dimensions that leaves the origin fixed, or correspondingly, an isometry group of a 3-sphere.
== History on four-dimensional groups ==

* 1889 Édouard Goursat, ''Sur les substitutions orthogonales et les divisions régulières de l'espace'', Annales scientifiques de l'École Normale Supérieure, Sér. 3, 6, (pp. 9–102, pp. 80–81 tetrahedra), Goursat tetrahedron
* 1951, A. C. Hurley, ''Finite rotation groups and crystal classes in four dimensions'', Proceedings of the Cambridge Philosophical Society, vol. 47, issue 04, p. 650〔http://journals.cambridge.org/action/displayAbstract?fromPage=online&aid=2039540〕
* 1962 A. L. MacKay ''Bravais Lattices in Four-dimensional Space''〔http://met.iisc.ernet.in/~lord/webfiles/Alan/CV25.pdf〕
* 1964 Patrick du Val, ''Homographies, quaternions and rotations'', quaternion-based 4D point groups
* 1975 Jan Mozrzymas, Andrzej Solecki, ''R4 point groups'', Reports on Mathematical Physics, Volume 7, Issue 3, p. 363-394
* 1978 H. Brown, R. Bülow, J. Neubüser, H. Wondratschek and H. Zassenhaus, ''Crystallographic Groups of Four-Dimensional Space.''〔http://journals.iucr.org/a/issues/2002/03/00/au0290/au0290.pdf〕
* 1982 N. P. Warner, ''The symmetry groups of the regular tessellations of S2 and S3'' 〔http://www.jstor.org/discover/10.2307/2397289?uid=3739736〕
* 1985 E. J. W. Whittaker, ''An atlas of hyperstereograms of the four-dimensional crystal classes''
* 1985 H.S.M. Coxeter, ''Regular and Semi-Regular Polytopes II'', Coxeter notation for 4D point groups
* 2003 John Conway and Smith, ''On Quaternions and Octonions'', Completed quaternion-based 4D point groups
* 2015 N. W. Johnson ''Geometries and Transformations'', Extended Coxeter notation for 4D point groups

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「Point groups in four dimensions」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.